Long Brownian bridges in hyperbolic spaces converge to Brownian trees

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two-dimensional Poisson Trees converge to the Brownian web

The Brownian web can be roughly described as a family of coalescing one-dimensional Brownian motions starting at all times in R and at all points of R. The two-dimensional Poisson tree is a family of continuous time one-dimensional random walks with uniform jumps in a bounded interval. The walks start at the space–time points of a homogeneous Poisson process in R2 and are in fact constructed as...

متن کامل

Hyperbolic Branching Brownian

17 almost surely, and by Lemma 8 below, lim m!1 m ?1 E log M m = : Consequently, for each " > 0 there exists a nite, nonnegative, G?measurable random variable = " such that for every k 1, with probability 1, P(A k j G) expfkm(? ")g: Now let n = fj ? 0 j < e ?nm g. By Corollary 7, for any n 1,

متن کامل

Hyperbolic branching Brownian motion

Hyperbolic branching Brownian motion is a branching di usion process in which individual particles follow independent Brownian paths in the hyperbolic plane H2, and undergo binary ssion(s) at rate ¿0. It is shown that there is a phase transition in : For 51=8 the number of particles in any compact region of H2 is eventually 0, w.p.1, but for ¿1=8 the number of particles in any open set grows to...

متن کامل

Limiting behaviors of the Brownian motions on hyperbolic spaces

Abstract: By adopting the upper half space realizations of the real, complex and quaternionic hyperbolic spaces and solving the corresponding stochastic differential equations, we can represent the Brownian motions on these classical families of the hyperbolic spaces as explicit Wiener functionals. Using the representations, we show that the almost sure convergence of the Brownian motions and t...

متن کامل

A pr 2 00 3 Two - dimensional Poisson Trees converge to the Brownian web

The two-dimensional Poisson tree is a family of continuous time one-dimensional random walks with bounded uniform jumps in R. The walks start at the space-time points of a homogeneous Poisson process in R and are in fact constructed as a function of the point process. This tree was introduced by Ferrari, Landim and Thorisson. The Brownian web can be roughly described as a family of coalescing o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronic Journal of Probability

سال: 2017

ISSN: 1083-6489

DOI: 10.1214/17-ejp68